Memo 8: Flight Planning

Lily Hopkins

Last revised: 2025-10-02

Contents

1.	The Pilots Operating Handbook	. 2
2.	Mass and Balance	. 2
3.	Factors affecting Performance	. 3
4.	Density Altitude	. 4
	Take-off Performance	
6.	Climb Performance	. 5
7.	Cruise Performance	. 6
8.	Landing Performance	. 7
	Performance Graph References	
10.	Flight Planning	. 7
	Flight Monitoring	

Hopkins Page 1 of 9

1. The Pilots Operating Handbook

- · Each aircraft has a dedicated POH
- Contains operating procedures, aircraft data and performance
- Supplements may be issued by the manufacturer, in which case they MUST be incorporated into the POH
- The state of registration may also issue supplements, which override the manufacturer
- Terms used:

MAUW maximum all up weight **CofG limits** centre of gravity

- · Beware, POH units may not be consistent throughout
- POH performance figures are generally unfactored and have no safety margin
 - Figures for dry, level, hard runway in ISA
 - Variations must therefore be accounted for

2. Mass and Balance

· Definitions:

MTOM maximum take-off mass
MLM maximum landing mass

MZFM maximum zero fuel mass

BEM/BEW basic empty mass

UF usable fuel

TL traffic load

DOM dry operating mass

Payload the spare mass for pax and luggage

- · An aircraft has a designed maximum weight, MAUW or MAUM
 - Might be different for take-off and landing
- · Mass includes:
 - Actual weight of the empty aircraft
 - equipment
 - engine oil
 - unusable fuel
 - pilot
 - crew
 - pax
 - actual weight is best
 - commercial flights use a standard weight from PART-OPS 1
 - baggage
 - fuel
- Aircraft empty mass is measured by a weighing report
 - Must be legally reweighed if equipment is instaled or removed, or a paint respray

Hopkins Page 2 of 9

- Mass and CofG must be within certain limits
- Different CofG values affect handling
- An empty a/c will have a predetermined CofG
- CofG is given in reference to a datum, e.g. the firewall
- After calculations, mass and balance figures must fall within the area specified in the POH
 - Must be checked for loaded weight and ZFM/ZFW to ensure stays within acceptable area

3. Factors affecting Performance

- Many factors, can be split into three areas:
 - Aerodynamic
 - ► Thrust
 - Generic
- Aerodynamic factors
- Air density (effect on lift)
- Airframe age and condition
 - Weight gain through corrosion, polish layers, dust and dirt, etc.
 - Cleanliness
- Thrust factors
 - Air density (effect on engine)
 - Engine age and condition
 - Propellor age and condition
- Generic factors
 - Pilot skill and experience on type
 - Groundspeed/TAS relationship
- Application of factors
 - Generic numbers are available, but use manufacturer numbers if possible
 - Since every a/c is different, an additional safety factor must be applied at the end of the calculations
 - ► All factors must be multipled together and applied to take-off distance and landing distance
- The generic safety factors are:

Hopkins Page 3 of 9

	TAKE-O	FF	LANDING		
CONDITION	INCREASE IN TAKE -OFF DISTANCE TO HEIGHT 50 FEET	FACTOR	INCREASE IN LANDING DISTANCE FROM 50 FEET	FACTOR	
A 10% increase in aeroplane weight, e.g. another passenger	20%	1.20	10 <mark>%</mark>	1.10	
An increase of 1,000 ft in aerodrome elevation	10%	1.10	5%	1.05	
An increase of 10°C in ambient temperature	10%	1.10	5%	1.05	
Dry grass* - Up to 20 cm (8 in) (on firm soil)	20%	1.20	15% [†]	1.15	
Wet grass* - Up to 20 cm (8 in) (on firm soil)	30%	1.3	slippery, distance	35% ⁺ 1.35 short grass may be ery, distances may ease by up to 60%	
Wet paved surface		10	15%	1.15	
A 2% slope*	Uphill 10%	1.10	Downhill 10%	1.10	
A tailwind component of 10% of lift-off speed	20%	1.20	20%	1.20	
Soft ground or snow*	25% or more	1.25 +	25% ⁺ or more	1.25 +	
NOW USE ADDITIONAL SAFETY FACTORS (if data is unfactored)		1.33		1.43	

4. Density Altitude

- Air density affects lift and engine parameters
- Air density is affected by atmospheric pressure, air temperature and humidity
- As you climb:
 - ► Pressure decreases : density decreases
 - ► Temperature decreases : density increases
 - All factors must be considered
- To calculate:
 - Get pressure altitude
 - Remember! This is the altitude with SPS set on subscale!
 - Perform temperature correction
 - Easiest with a flight computer

Hopkins Page 4 of 9

5. Take-off Performance

Definitions:

TODA Take-off distance to 50ft obstacle

EDA/ASDA Distance to accelerate and stop on the runway and stopway

- V_{y} best rate of climb (maximise y)
- V_x best angle of climb (minimise x)
- · Factors affecting take-off performance
 - Headwind
 - POH will contain the factor for headwind, otherwise assume no headwind
 - Tailwind
 - Use factor
 - Flap
 - Decreases ground run
 - Decreases rate of climb
 - Mass
 - Runway surface
 - Runway gradient
 - As a rule of thumb, the a/c must be able to climb at twice the angle of the runway
 - Density altitude
- · Linear interpolation may be required to read from tables in the POH
- If TODA isn't published for a runway, your calculated take-off distance figure must fit within available runway length.

6. Climb Performance

- · For a climb, we want more lift than weight
 - Lift can be increased by:
 - Airspeed
 - AoA
 - Increasing lift also increases drag
 - ► Performance is a factor of power or thrust available to produce lift and overcome drag
- By viewing a thrust curve (speed thrust available and req'd), you can establish the best angle of climb speed, V_x , by the global maximal difference between thrust available and thrust required (to remain airbourne)
 - ► Thrust is a function of power, but does not take into account the amount of work per unit time
- By viewing the power curve (speed power available and req'd), you can establish the best rate of climb speed, V_y , by the global maximal difference between power available and power required (to remain airbourne)
 - Power takes into account the amount of work per unit time
- Rules of thumb:
 - V_x and V_y decrease by 1kt for eveny 100lb lower than the a/c MAUW
 - V_u decreases by 1kt for every 1000ft increase in density altitude
 - V_x increases by 1kt for every 1000ft increase in density altitude

Hopkins Page 5 of 9

- Rules of thumb for cruise climb:
 - ► Once we are clear of the ground, we can climb for best fuel efficiency and journey progress
 - ► As a rule of thumb, if not provided in the POH:

–
$$V_{\text{cruise climb}} = V_y + (V_y - V_x)$$

• If you are "on the back of the drag curve", you are in the region where more power is required just to stay aloft (i.e. close to a stall but not quite there)

7. Cruise Performance

- The maximum level flight speed is found where the power available meets the power required
- · Best endurance speed
 - Found by the point where a tangent drawn to the power required line is horizontal on the power curve
- · Best range speed
 - Range is a function of speed and power
 - Found by the point whose tangent to the power required curve meets the horizontal axis at the speed of the head-/tail-wind component
 - decreased by a tailwind
 - ▶ increased by more a/c weight
- Effect of CofG on performance
 - ► The tail produces a downwards force to pitch the nose up
 - ► If the CofG moves:
 - forwards: more downforce is required from the tail plane, adding weight to the a/c, resulting in a higher AoA and more drag
 - aftwards: performance increases
- · Cruise performance varies by density altitude, via engine power and aerodynamics
 - Airspeed can be misread due to errors:
 - Insturment error
 - Position error
 - Density error
 - IAS vs CAS vs TAS
- Take advantage of tail winds!
 - ► Recall as well that winds veers (+) as altitude increases and backs (-) as altitude decreases
- Glide angles will be specified in the POH, but to convert to a glide distance, it is worth using the flight computer
 - Heavier aircraft need to glide faster!
 - same glide distance, rate of descent increased!
 - Headwinds and tailwinds do not affect the rate of descent in a glide, but change the effective gliding angle
 - A windmilling propellor adds significant drag
 - If airspeed is reduced to almost stall speed to stop windmilling, an extra 20% glide performance can be achieved
- Cruise performance is also affected by:

Hopkins Page 6 of 9

- ► Rain
- ▶ Ice
- Flap

8. Landing Performance

· Definitions:

LDA Landing distance available (from a 50ft obstacle)

 $V_{
m mc}$ minimum control speed (twin engine a/c only)

 $V_{
m ref}$ landing reference speed, used at the 50ft obstacle height

 $oldsymbol{V}_{
m at}$ approach threshold speed

- ▶ The speed to perform the approach in landing configuration
- ▶ dirty stall speed +30%
- Factors affecting landing performance
 - Headwind
 - Decreases landing distance
 - Increases effective descent angle
 - Tailwind
 - Increases landing distance significantly
 - Decreases effective descent angle
 - Flaps
 - Increased lift
 - Increased drag
 - Lower nose attitude
 - Mass
 - An increase of mass increases landing distance
 - Runway surface
 - Anything other than dry hard paved surface will need a factor applied
 - Runway gradient
 - Density altitude
- A final safety factor of 1.43 must be applied
 - accounts for non-perfect piloting, a worn engine, dirty airframe, and unforseen circumstances

9. Performance Graph References

- · In the exams:
 - CAP696, CAP697, CAP698

10. Flight Planning

- · Referencing the Earth
 - Latitude

Hopkins Page 7 of 9

- Longitude
- as either decimal degrees, or degrees, minutes and seconds
- Distance is difficult, as the width between longitudes is inconsistent at different latitudes
- · However, latitude is easier, 1 minute of latitude is one nautical mile
- · Celestial navigation can be used to determine true North
 - Magnetic North is not quite the same as True North
 - ► The magnetic field can also be bent around geographic features, but this can be plotted
 - Isogonals show lines of equal magnetic variation
 - When applying magnetic variation, remember "West is best (+), East is least (-)".
- Route planning
 - Charts show obstructions >328ft AGL
 - All heights are typically AMSL
 - Altimeter setting regions are split by lines of barbells
 - Remember that flying below airspace requires you to use the QNH of that airspace, not the regional setting
- Fuel planning:
 - You must land with at least 30 minutes (day VFR) or 45 minutes (night or IFR) endurance after landing
 - ► Best practice, hold enough fuel for route + 5% + diversion + final reserve + 15 minutes of cruise fuel for takeoff, taxi, etc.
- Check NOTAMs
 - https://nats.aero/ais
 - Additional last minute notifications can be found by calling the AIS briefing line: 0808 535 4802 (or +441489 887 515).
 - a guide to decoding NOTAMs
- File a flight plan
 - Required if crossing an FIR boundary
 - Must be submitted at least 60 minues prior to off blocks
 - Remember to close it after the flight!

11. Flight Monitoring

- A good flight plan has:
 - Fuel planning
 - Pre-flight information
 - Flight leg spaces
 - Fuel management
 - Ordered log space
 - Reference information
- Plan Maintenance
 - Keep up-to-date
 - Monitor your track
 - Amend ETAs as you go

Hopkins Page 8 of 9

- Record notable in-flight events
- Keep track of how much fuel you have and have left

Hopkins Page 9 of 9